

## ORDNANCE & EXPLOSIVES TOOLBOX



#### Introduction

- Ordnance and Explosives (OE) Toolbox is a set of tools to enhance and ensure explosives safety at OE sites
- OE Toolbox includes:
  - Blast Effects Prediction Methods
  - Engineering Controls
- Developed as part of Huntsville Center's OE Innovative Technology Development Program



#### Available Tools

- Blast Effects Prediction Methods
  - Ordnance fragmentation characteristics
  - Range to no more than 1 hazardous fragment/600 sq. ft.
  - Consolidated Shots
- Engineering Controls
  - Buried Explosion Module
  - Sandbag Enclosures
  - Water Mitigation Method
  - Barricades
  - Donovan T-10 Transportable Blast Chamber



## Prediction of Primary Fragmentation from Cased Munitions (HNC-ED-CS-S-98-1)

- Methodology for predicting fragmentation characteristics of cased, cylindrical munitions based on techniques in TM 5-1300
- Prediction based on explosive weight, case weight, and munition geometry
- Results: Maximum fragment weight, average fragment weight, total number of fragments, fragment weight for a given confidence level and initial fragment velocity
- Used to compute fragment distances, striking energy, areal distribution of fragments, and penetration
- **❖** Method approved by DDESB on 6 Apr 98 "for use in deciding Inhabited Building Distance (IBD) for primary fragments in site remediation activities".



## Hazardous Fragment (1/600) Distance (HNC-ED-CS-S-98-2)

- Distance to exposure to one hazardous fragment per 600 square foot area
- Fragmentation characteristics IAW HNC-ED-CS-S-98-1
- Hazardous fragment density and distance computed as per NATO Safety Principles, AASTP 1 (AC/258-D/258)
- Simple computer program to compute 1/600 distance
  - HAZFRAG DOS version
- Method and HAZFRAG approved by DDESB on 6 Apr 98 "for use in deciding Inhabited Building Distance (IBD) for primary fragments in site remediation activities".



#### Consolidated Shots

- Procedure developed for multiple round detonation
- Munitions placed with sides touching such that their axis is horizontal with the nose of each pointing in the same direction
- Munitions oriented so that lugs, strong-backs, nose, and/or tail plate sections are facing away from personnel locations
- Minimum separation distance will be the greater of
  - Overpressure distance (K328) based on total NEW of all munitions plus the initiating explosives
  - Appropriate fragment range as determined by the maximum fragment range or the mitigated fragment range based on the worst case munition in the shot
- **❖** Approved by DDESB 27 October 1998



## Buried Explosion Module (HNC-ED-CS-S-97-7, Rev. 1)

- Calculate required withdrawal distances for intentional detonations that use earth cover for fragmentation mitigation
- Compute maximum fragment characteristics IAW HNC-ED-CS-S-98-1
- **❖** BEM has been automated in a simple computer program
  - For a given round, burial depth and soil type,
  - Determine whether a crater or a camouflet is formed
  - Compute the residual velocity of the fragment
  - Compute maximum soil ejecta radius
- ❖ BEM method and computer program have been approved by DDESB on 3 November 1998 "for deciding public and operation withdrawal distances during ordnance and explosives (OE) operation involving intentional detonations".



### Sandbag Enclosures for Fragment Mitigation (HNC-ED-CS-S-98-7)

- Procedures and guidelines for using sandbags to reduce fragment distances for intentional detonations
- Based on 1997-1998 testing program
- Procedures include:
  - Required thickness of sandbags needed to capture all fragments
  - Sandbag throw distances
  - Enclosure construction details
- Valid for munitions up to 155mm
- Guidelines approved by DDESB on 23 February 1999 "to mitigate hazards and protect personnel from intentional detonations of munitions up to the 155-mm M107."





# Water Mitigation of Fragments & Blast Effects From Intentional Detonations (HNC-ED-CS-S-00-3)

- Procedures and guidelines for using water to reduce fragment distances for intentional detonations
- Based on 1999 testing program
- Procedures include:
  - Required thickness/depth of water needed to defeat all fragments
  - Water container throw distances
  - Construction details
- Valid for munitions up to 155mm
- Guidelines approved by DDESB on 27 February 2001 "for field use in Ordnance Explosives (OE) removal action projects."



## 1100 gallon Agricultural Tank





## 5 gallon Carboys over an 81-mm





## Post Detonation of 60-mm Under an Inflatable Pool





## Initiation of Detonation for Sandbags and Water Methods

- Original tests were done using commercial shaped charges to initiate detonation.
- All information provided on MSD calculation sheet is based on use of commercial shaped charge.
- ❖ 2001 tests using C-4 donor charge to initiate 155 mm under sandbags show that no more than 1 block (1.25 lbs) of C-4 can be used.
- Use of C-4 or a booster to initiate detonations requires a new MSD calculation sheet based on the amount of donor charge.



#### Standard Designs of Barricades

- Developed a series of standard barricades for fragment mitigation during excavation and removal of OE items
- Provide fragment protection from accidental detonations
- Barricade Types:
  - Open Front Barricade
  - Enclosed Barricade
  - Miniature Open Front Barricade ("Bud-Light")
  - Trailer-Mounted Bud-Light
  - Plate Barricade
  - Bulk Barricade
  - Modular Sandbag Barricade



## Miniature Open Front Barricade ("Bud Light") (HNC-ED-CS-S-98-8)

- Developed a standard barricade for fragment mitigation during excavation of OE items up to an 81 mm mortar
- Provide fragment protection from unintentional detonations
  - Reduces separation distance due to fragmentation on three sides
  - Does not reduce separation distance out open front
  - Not designed to mitigate effects from blast overpressure or noise
  - Not intended for reuse after an accident
- Constructed of 1/4 aluminum plates welded together to form a basic barricade with aluminum channels to hold additional plates
- ❖ 3 ft square footprint, 3 ft tall in front sloping to 2 ft in rear
- Miniature Open Front Barricade approved by DDESB on 23 February 1999









# Open Front & Enclosed Barricades (HNC-ED-CS-S-99-1 Terminology Update March 2000)

- Provide fragment protection from unintentional detonations
  - Open front reduces separation distance due to fragmentation on 3 sides, enclosed on 4 sides
  - Open front does not reduce separation distance out open front
  - Not designed to mitigate effects from blast overpressure or noise
  - Not intended for reuse after an accident
  - Holds a maximum of 2.75 inches of aluminum plate
- Frame constructed of square tubing with pins to hold aluminum plates
- 4 ft square footprint, 6 ft tall
- Open Front & Enclosed Barricades approved by DDESB on 9 December 1999



#### OPEN FRONT BARRICADE









## Donovan T-10 Transportable Blast Chamber

- Commercially developed by DeMil International
- Alternative to open detonation or transportation of recovered ordnance to a remote site
- Used to intentionally detonate ordnance items ranging in size up to and including the 81 mm HE mortar rounds
- Maximum NEW 10 lbs HMX (13 lbs TNT)
- Noise levels from 10 lbs HMX detonation inside T-10 are approximately 130 dB at 30 ft
- Air Pollution Control Unit attached to system
- **♦ Approved by DDESB 31 January 2000**



## Donovan T-10 Transportable Blast Chamber





#### **OE Toolbox Location**

- The virtual location for the OE Toolbox is Huntsville Center's Internet Web Site
  - www.hnd.usace.army.mil/oew/tech/AnalyticalT ools/analindx.htm
  - Must complete form requesting access first time
  - Can download reports and software
  - Can access report summaries (Index) without password
- Password protected area of website is down at this time.



# US Army Corps of Engineers Engineering and Support Center, Huntsville



## 105mm Fragment Characteristics

| Region | Maximum<br>Fragment<br>Weight<br>(lb) | Initial<br>Fragment<br>Velocity<br>(fps) | Max<br>Fragment<br>Range<br>(ft) | Hazardous<br>(1/600)<br>Fragment<br>Range (ft) |
|--------|---------------------------------------|------------------------------------------|----------------------------------|------------------------------------------------|
|        |                                       |                                          |                                  |                                                |
|        |                                       |                                          |                                  |                                                |
|        |                                       |                                          |                                  |                                                |
|        |                                       |                                          |                                  |                                                |



#### 105mm Example

❖ 105 mm M1, 5.08 lbs Comp B, buried in Wet Sandy Clay

| Depth of<br>Burial (ft) | Residual<br>Fragment<br>Velocity<br>(fps) |  |
|-------------------------|-------------------------------------------|--|
|                         |                                           |  |
|                         |                                           |  |
|                         |                                           |  |
|                         |                                           |  |
|                         |                                           |  |



#### Sandbag Results

<sup>\*</sup> Sandbag thickness required to capture all fragments

<sup>\*\*</sup> Measured distance plus 10% safety factor



#### Model - 105mm M1





## 105mm Fragment Characteristics

| Region | Maximum  | Initial  | Max      | Hazardous  |
|--------|----------|----------|----------|------------|
|        | Fragment | Fragment | Fragment | (1/600)    |
|        | Weight   | Velocity | Range    | Fragment   |
|        | (lb)     | (fps)    | (ft)     | Range (ft) |
| Α      | 0.206    | 4055     | 1939     |            |
| В      | 0.155    | 4870     | 1869     |            |
| С      | 0.086    | 5175     | 1590     | 341        |
| D      | 0.096    | 4021     | 1548     |            |



#### 105mm Example

❖ 105 mm M1, 5.08 lbs Comp B, buried in Wet Sandy Clay

| Depth of<br>Burial (ft) | Crater or Camouflet | •        | Max Soil<br>Ejecta | Primary<br>Fragment |
|-------------------------|---------------------|----------|--------------------|---------------------|
|                         |                     | Velocity | Radius             | Range               |
|                         |                     | (fps)    | (ft)               | (ft)                |
| 3                       | Crater              | 189      | 165                | 495                 |
| 3.5                     | Crater              | 114      | 168                | 270                 |
| 4                       | Crater              | 68       | 170                | 125                 |
| 4.5                     | Crater              | 41       | 172                | 50                  |
| 5                       | Camouflet           | 25       | 0                  | 20                  |



#### Sandbag Results

| Munition        | Charge Weight  | Sandbag<br>Thickness (in)* | Max Sandbag<br>Throw Distance<br>(ft)** |
|-----------------|----------------|----------------------------|-----------------------------------------|
| 155-mm M107     | 15.4 lb Comp B | 36                         | 220                                     |
| 4.2-inch M329A2 | 8.17 lb TNT    | 24                         | 125                                     |
| 105-mm M1       | 5.08 lb Comp B | 24                         | 135                                     |
| 81-mm M374A2    | 2.1 lb Comp B  | 20                         | 125                                     |
| 60-mm M49A4     | 0.42 lb Comp B | 12                         | 25                                      |

<sup>\*</sup> Sandbag thickness required to capture all fragments

<sup>\*\*</sup> Measured distance plus 10% safety factor



## Miniature Open Front Barricade (Cont.)

- Miniature Open Front Barricade approved by DDESB on 23 February 1999 with several qualifications as detailed in the approval letter. These qualifications include:
  - Only approved for use during intrusive activities, <u>not</u> for intentional detonations or removal of OE item
  - Intended to defeat primary fragments to its sides, rear, and top for unintentional detonation
  - Does <u>not</u> mitigate primary fragments to its open front
  - Is <u>not</u> intended to mitigate overpressure or noise from an unintentional detonation
  - Will <u>not</u> be used for munitions with a TNT-equivalent, NEW exceeding 2.3 lbs
  - Will <u>not</u> be used for intentional detonations
  - Will <u>not</u> be reused after a detonation



## Open Front & Enclosed Barricades (Cont.)

- Open Front & Enclosed Barricades approved by DDESB on 9 December 1999
  - Approved for use during intrusive OE removal operations
  - Designed to defeat primary fragments resulting from an accidental detonation
  - Are <u>not</u> designed to mitigate overpressure or noise



## Donovan T-10 Transportable Blast Chamber

- ❖ Approved by DDESB 31 January 2000
  - Siting for operations leading up to detonations in the chamber must be considered separately
  - Maximum NEW 13 lbs TNT equivalent or 10 lbs HMX equivalent
  - Fragment producing munitions with diameters up to and including 81 mm may be intentionally detonated in chamber
  - Personnel within 18 ft of T-10 must have ear protection
  - T-10 chamber does not mitigate hazards from chemical, biological or WP munitions